Optimization of 2D Gel Transblotting for Host Cell Protein Analysis

Jon Johansen, Matt Hoelter & Nancy Kendrick* Kendrick Labs Inc, Madison, WI www.kendricklabs.com

Talk Outline

- Biologic drugs, recombinant proteins
- Problem of HCP contamination
- Using 2D gel WB to characterize antibodies against HCP.
- Work on optimizing transblotting
- Conclusions
- Collaborators

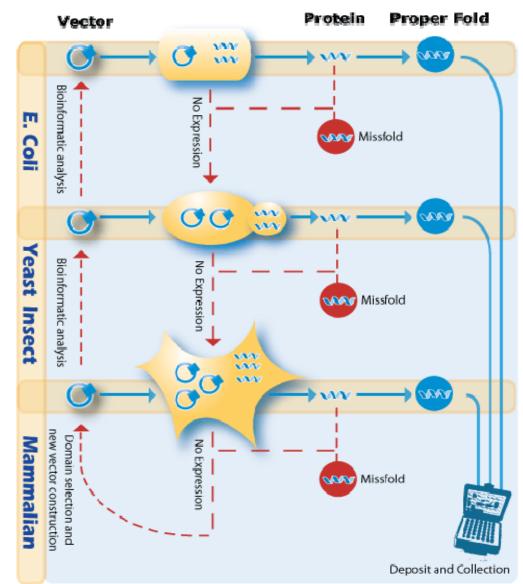
Many cutting-edge drugs are biologics

What is a Biologic?

Biological products are those derived from natural sources. They can be composed of sugars, proteins, nucleic acids, or complex combinations, or may be living cells and tissues. Examples: flu vaccine, artificial skin, gene therapy, and especially **recombinant therapeutic proteins**. The latter are derived from cultured cells or bacteria.

How do biologics differ from conventional drugs?

Conventional drugs have known structures and may be chemically synthesized. In contrast, biologics are complex and not easily characterized. They tend to be heat sensitive and susceptible to microbial contamination.

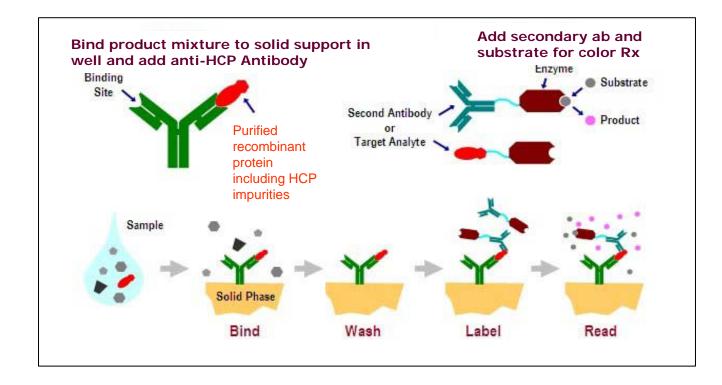

Classes of Approved Recombinant-Protein Drugs with Examples (~100 total so far)

- Hormones: Insulin (Humulin, the first in 1983), human growth hormone (Humatrope),
- **Cytokines:** Interferon alfa (Roferon-A), interleukin (Proleukin)
- Clotting factors: Factor VII (NovoSeven), factor VIII (Kogenate)
- Monoclonal antibodies: anti-VEGF (Avastin), anti-EGFR (Erbitux)
- Vaccine products Hepatitis B surface antigen (Recombivax HB), B. burgdorferi outer surface protein A (LYMErix)
- Enzymes: Glucocerebrosidase (Cerezyme), DNase (Pulmozyme)
- Novel synthetic proteins: Fusion protein of interleukin-2 and diphtheria toxin (Ontak)
- Novel conjugates: Covalently attached metal chelators: (Zevalin); Covalently attached chemotherapeutics: Mylotarg

Taken from: Dudzinski, D. & Kesselheim, A., NEJM 358: 832, 2008

Recombinant Protein Synthesis Diagram taken from the Genway Biotech website: www.genwaybio.com

Host cells can be *E. coli*, yeast, insect, and mammalian cultured cells, especially CHO.

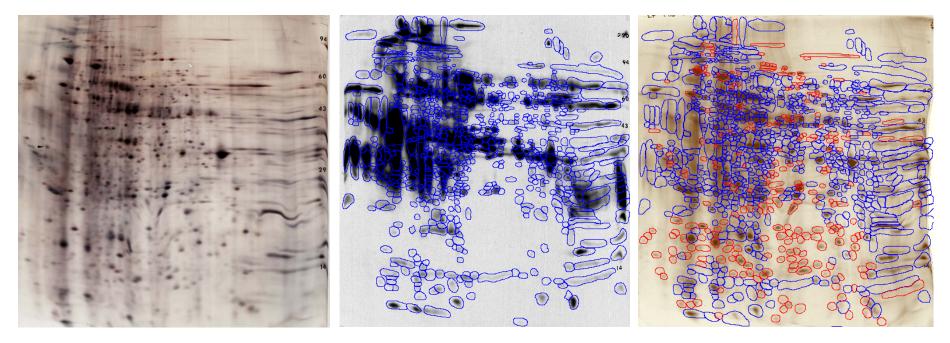


2D gel electrophoresis is useful at several stages of production.

- 2DE is used to characterize charge isoforms of recombinant proteins.
- 2D WB with an anti-HCP ab during production steps allows identification of contaminants by MS, *e.g.* (1)
- 2D WB may be used to characterize the anti-HCP antibodies used for Elisa quantification.

1. Hunter, A. et. al Separation of host cell proteins oppa and dppa from recombinant apolipoprotein in an industrial hic unit operation. *Biotechnol Prog,* 2009. *25(2)*: p. 446-53.

To measure HCP contamination for the FDA: obtain a *antibody against HCP* and set up a quantitative Elisa assay


Elisa testing can be standardized and validated for GMP. However, it's only as good as the polyclonal antibody.

The anti-HCP antibodies must be checked for specificity

Kendrick Labs is getting requests to characterize anti-HCP ab using 2D Western blotting. The number of spots on a 2D film is compared to the number on a silver-stained pattern from the same sample.

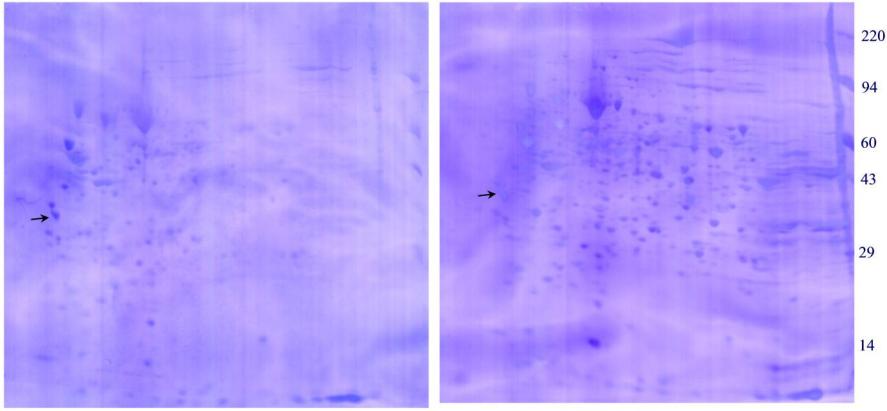
If the Western shows a high percentage of the silver-stained proteins, it's a good antibody.

Example of HCP Antibody Analysis

Silver-stained 2D gel from HCP shows 1045 spots with Progenesis SS Western blot with a anti-HCP antibody shows 798 spots Results: Red shows spots present on silver but missing from WB (blue).

Final Result: 798/1045 spots = 76%. Not a perfect antibody, but not bad.

Western blotting is difficult to standardize

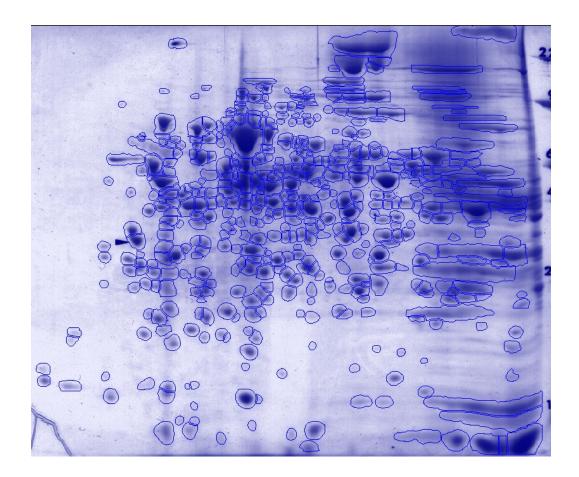

- Protein recovery on the blot isn't known. Basic proteins are known to transfer differently than acidic ones.
- Antibody specificity varies from animal to animal and species to species. (Host cell protein antibodies are polyclonal.)

PVDF transblotting has been around for years

Basic Protocol

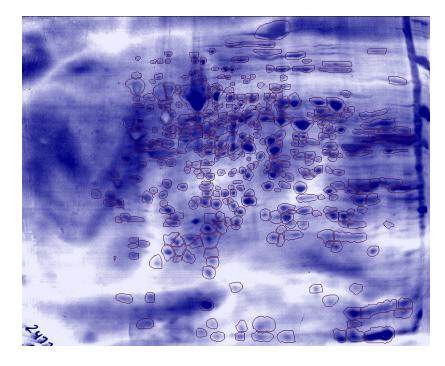
- Transfer the 2D gel proteins to a PVDF membrane using either Tris-glycine buffer, pH 8.8, or CAPS buffer, pH 11. (SOPs L-1610, L-1614 are similar).
- Stain with Coomassie and scan to record the 2D pattern.
- Rinse, block and incubate with a primary antibody overnight.
- Visualize the proteins with a secondary HRP-ab that induces ECL fluorescence; expose to x-ray film.

Observation: Coomassie blue-stained CAPS blots look better than tris-glycine blots

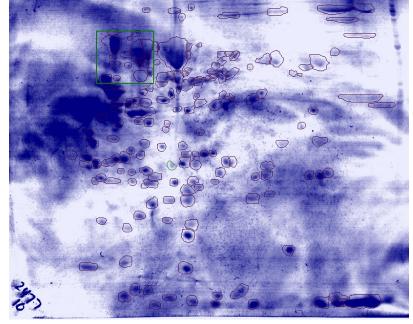


Tris-glycine Buffer

CAPS Buffer


Rat liver cytosol test sample was equally loaded on both 2D gels

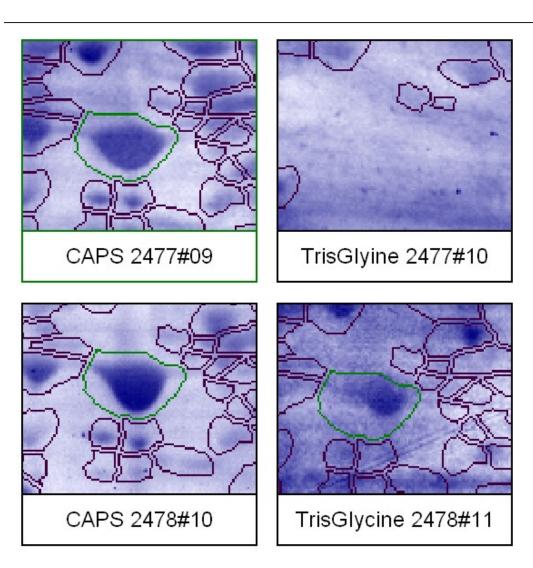
We counted spots to check differences



A Coomassie blue-stained 2D gel analyzed with Progenesis SS showed 482 polypeptide spots.

Similar analysis of CAPS and Trisglycine stained blots showed:

281 spots for CAPS (58%)

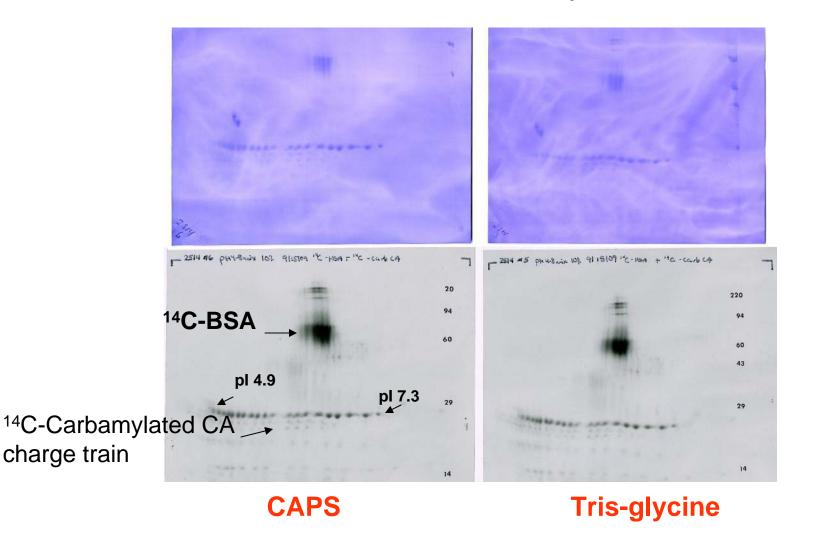


178 spots for Tris-glycine (37%)

Much better recovery?

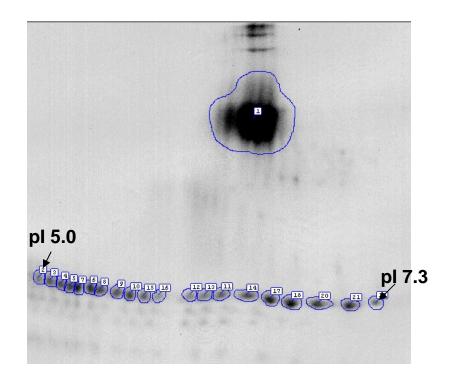
But it is real or a staining problem?

Maybe the trisglycine blots don't stain well.


We tried using ¹⁴C-labeled proteins to compare recoveries on the blots

- Run 2D gels with ¹⁴C-BSA and ¹⁴C-carbamylated CA (pl marker) that had been previous synthesized and stored at -80° C for 20 years (1,2).
- 2. Transblot duplicate gels to PVDF using CAPS and Tris-glycine
- 3. Expose to x-ray film and quantify spots.

References:


- 1. Jentoft, N, Dearborn DG. Protein labeling by reductive alkylation. Methods Enzymol, 1983: 570-79.
- 2. Burgess-Cassler, A, Johansen, J, Santek, D, Ide, J & Kendrick N, Computerized quantitative analysis of CB-stained serum proteins separated by 2DE. Clin Chem 35: 2297-2304, 1987.

A pH 4-8 IEF gradient had to be used to resolve the ¹⁴C-carbamylated CA

Spot Quantification shows no difference in recovery on CAPS vs TG blots

Carb-CA	TrisGlycine	CAPS	Ratio
Spot	Spot	spot	Spot Volume
pl	Volume	Volume	Caps/TrisGly
4.99	245	176.9	0.7
5.08	310	235.0	0.8
5.14	238	215.3	0.9
5.2	285	215.0	0.8
5.27	336	269.5	0.8
5.37	293	200.0	0.7
5.46	313	267.9	0.9
5.54	311	252.4	0.8
5.63	280	249.1	0.9
5.7	313	251.0	0.8
5.86	218	155.0	0.7
6.01	266	194.0	0.7
6.11	435	361.3	0.8
6.27	273	226.2	0.8
6.45	192	141.4	0.7
6.61	453	383.9	0.8
6.75	531	411.5	0.8
6.97	224	125.1	0.6
7.11	464	418.0	0.9
7.3	389	335.0	0.9
		Average	0.8

Conclusions

- CAPS transfer buffer allows better visualization of proteins on Coomassie stained PVDF blots.
- However, protein recoveries on the blot with CAPS are not necessarily higher. Recovery probably varies between protein species and has to be checked.
- 2D WB is a useful tool for scientists evaluating recombinant proteins.

Collaborators:

Jon Johansen, Lab Manager

Matt Hoelter, Biochemist, AES Executive Director